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Dear colleagues and friends, 

 

it is our immense pleasure to welcome you at the first meeting on Aromatic HeteRoCycles (AHeRoC). 

At the BUReS group, we always look on organic molecules as perspective materials and are mostly 

interested in their functionality and added value. We perceive this viewpoint far more general, as an 

element gluing the community of chemists, physicists, engineers, and materials scientists. In this 

respect, aromatic compounds represent a very burgeoning and long-lasting area of research, which 

has significantly infiltrated modern organic devices across organic electronics, batteries, switches, 

sensors, catalysts, drugs and many others. In addition, the presence of a heteroatom within the 

aromatic structure brings new and even pronounced fundamental physico-chemical properties that 

may be further utilized in various fields. 

     Upon several years of consideration, we present herein the AHeRoC as a wonderful pool of organic 

materials. We strongly hope the AHeRoC would become a platform for sharing and exchanging ideas, 

knowledge, methodologies, organic molecules, and mostly to learn novel and fascinating applications 

of organic pi-systems. The latter is the main focus of the conference. In view of the current pandemic 

situation, we decided to organize the meeting online. Unfortunately, this decision has detrimental 

effect on meeting in person, but we also believe that it would significantly facilitate your attendance 

as no traveling is needed. The AHeRoC will comprise of several invited talks as well as contributed 

lectures that are mostly devoted to younger researchers. In order to make your attendance easier, the 

meeting is free-of-charge. Only a registration is required, you can attend even without a contribution. 

A link to online meeting will be send to all registered participants during March 2022. In addition, 

a special issue devoted to the AHeRoC is organized jointly with the Organics journal. 

  

A HeRo of our meeting is Carbon! 

 

We look forward to see your favorite aromatic (hetero)cycles and their function on 16-17th March 

2022. 

 

Filip Bureš 
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Topics Covered but Not Limited To: 

(Hetero)aromatic compounds and general pi-systems. 

Synthesis, purification, and characterization. 

Fundamental and physico-chemical properties, studied both experimentally and theoretically. 

Perspective applications of aromatic (hetero)cycles (unlimited). 

 

Dates and Deadlines: 

Abstract submission and registration: 18. 2. 2022 

Date of the meeting: 16.-17. 3. 2022 

 

Contributions: 

Invited lecture: 40 min lecture + 10 min discussion 

Contributed lecture: 15 min lecture + 5 min discussion 

 

Presentation: 

Teams software has been selected as online platform. The appropriate link will be sent to all speakers 

on Monday 14th March 2022 afternoon. You will share your slides directly from your computer, feel 

free to use any favorite software when preparing your presentation. 

The technical session is scheduled on Monday 14th March 2022 at 8:00-10:00 AM (GMT+1); all 

speakers are requested to test their connection and ability to properly share your slides. A separate 

link will be sent to all speakers and attendees to this session. Brief instructions how to get connected 

will be provided at the conference webpage.  

All attendees are requested to connect into Teams via your name or email address you have used 

during registration, otherwise we may not grant access to the online meeting. 

 

Language: 

The official language of the meeting is English. 

 

A Virtual Visit: 

The Faculty of Chemical Technology, University of Pardubice can be 3D-visited here (only in Czech): 

https://fcht.upce.cz/fcht/virtualni-3d-modely-fakulty

https://fcht.upce.cz/fcht/virtualni-3d-modely-fakulty
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Organics became the AHeRoC publishing partner. All speakers and listeners are encouraged to submit 
their manuscript to a special issue devoted to AHeRoC: 
 
https://www.mdpi.com/journal/organics/special_issues/AH_WPOM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.mdpi.com/journal/organics/special_issues/AH_WPOM
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The AHeRoC meeting is supported by the European Regional Development Fund-Project “Organic 
redox couple based batteries for energetics of traditional and renewable resources (ORGBAT)”, No. 
CZ.02.1.01/0.0/0.0/16_025/0007445.  
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All times are listed in GMT+01:00 (Prague)! (IND GMT+05:30, CHN GMT+8:00, JPN GMT+09:00) 

     Wednesday March 16th, 2022 

8:50-9:00  Bureš F. Opening and Invitation 

9:00-9:50 PL1 Hill J. P. The Pyrazinacenes 

9:50-10:10 CL1 Hruzd M. Tunning the Luminescence Properties of Cyclometallated 
Platinum(II) Complexes based on Phenyldiazine 
N^C Ligands 

10:10-10:30 CL2 Dey N. Y-shaped Push-Pull Heterocyclic Dyes for ‘Naked-eye’ 
Detection of Environmental Toxins via Mild Chemical 
Reactions 

10:30-11:20 PL2 Castet F. Dynamics of the Second-Order Nonlinear Optical 
Responses of Organic Materials  

11:20-11:40 CL3 Postils Ribó V. Second-order NonLinear Optical Properties of -Shaped 
Pyrazine Derivatives Enlarged with 2,5-Thiophene Groups 

11:40-12:00 CL4 Podlesný J. Isomeric Thienothiophene Push-Pull Molecules with 
Tunable (Non)Linear Properties and Photoinduced 
E/Z Switching 

12:00-13:00 Lunch 
 

  

13:00-13:50 PL3 Achelle S. Development of -Conjugated Pyrimidine Derivatives 
as Applied Luminescent Materials 

13:50-14:10 CL5 Tydlitát J.  Controlled Emission with Pyridin 

14:10-14:30 CL6 Klikar M. Tripodal Fluorophores with Diazine Acceptors 
at the Periphery 

14:30-15:20 PL4 Fakis M. Photodynamics and 2-Photon Absorption Properties 
of Push-Pull Molecules with Heterocycle Substituents 
by Means of fs Laser Spectroscopy  

15:20-16:10 PL5 Cibulka R. Flavins – Not Only Cofactors but Also Versatile 
Photocatalysts  

16:10-16:30 CL7 Burešová Z. Electrochemical Study on Viologen Based Azinium 
Heteroaromates 

16:30-16:50 CL8 Pavlovska T. An Efficient One-Pot Three-Component Synthesis 
of Functionalized 5-Aryldeazaflavines for the Photoredox 
Catalysis 
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     Thursday March 17th, 2022 

9:00-9:50 PL6 Bhattacharya S. Covalent Organic Square Lattice Building Blocks toward the 
Supercapacitive Energy Storage  

9:50-10:10 CL9 Bouit P.-A. Twisting and Benting -System with 7-Membered P-Rings 

10:10-10:30 CL10 Pochobradský J. Use of Isochinoline-Oxazoline Ligand in Heterogenous 
Catalysis 

10:30-10:50 CL11 Kamlar M. Enantioselective PCCP Brønsted Acid-Catalyzed Synthesis 
of 2,3-Dihydroquinazolinone 

10:50-11:40 PL7 Kivala M. Alkynes and Bridged Triarylamines as Versatile 
Construction Elements for Functional Molecular Materials  

11:40-12:00 CL12 Ulč J. Iridium and Rhodium Catalysed C–C Bond Cleavage 
in 1-Aza-[3]triphenylene 

12:00-13:00 Lunch   

13:00-13:50 PL8 Mlostoń G. Imidazole N-Oxides as Promising Substrates for Generation 
of Nucleophilic Carbenes (NOHCs) and for Synthesis of 
Naturally Occurring Imidazole Alkaloids (Lepidilines A-D)  

13:50-14:10 CL13 Kocúrik M. Palladium (II) Complex of Pyridine-Oxazoline-Type Ligand 
as a Homogeneous/Heterogeneous Catalyst for 
Enantioselective Addition of Arylboronic Acids to Cyclic 
Ketimines 

14:10-14:30 CL14 Jasiński M. Synthesis of 3-Trifluoromethylpyrazoles via 1,3-Dipolar 
Cycloaddition Reactions and Subsequent Oxidative 
Aromatization of Cycloadducts Derived from 
Trifluoroacetonitrile Imines 

14:30-15:20 PL9 Albrecht Ł. New Dearomative Strategies in Stereocontrolled Organic 
Synthesis  

15:20-15:40 CL15 Mongin F. From Aromatic Iodides to Heterocycles of Interest 

15:40-16:00 CL16 Bartáček J. Polymer-supported Palladium (II) Complex of Pyridine-
Oxazoline as a Recyclable Catalyst for an Asymmetric 
Addition of Arylboronic Acids to Conjugated Cyclic Enones 

16:00-16:20 CL17 Váňa J. Reactivity and Site-selectivity of C–H Functionalization 
Reactions: The Acid Effect 

16:20-16:40 CL18 Marek L. Transformations of Thioiminium Salts Derived 
α-Bromoamides 

16:40-16:45  Bureš F. Closing 
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The Pyrazinacenes 

Jonathan P. Hill,a Gary J. Richards,b David Miklíkc  

a International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 

Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.  

http://www.nims.go.jp/eng/research/group/functional-chromophores/ 
b Department of Applied Chemistry, Graduate School of Engineering and Science, Shibaura Institute 

of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan. 
c Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of 

Pardubice, Pardubice, Czech Republic 

Acenes and azaacenes lie at the core of molecular materials’ applications due to their 

important optical and electronic features. A critical aspect is provided by their heteroatom multiplicity, 

which can strongly affect their properties. Here we discuss pyrazinacenes [1] containing fused 

oligopyrazine chromophores, including decaazapentacene [2] and higher chromophores [3], and 

compare their properties/functions at metal substrates or in solution. We find a distinguished, 

oxidation-state-dependent conformational adaptation and self-assembly behaviour and discuss the 

analogies and differences of planar benzo-substituted decaazapentacene and octaazatetracene forms. 

Decaazapentacenes and the higher tetradecaazaheptacene analogues studied here combine a planar 

molecular backbone with conformationally flexible substituents. They provide a rich model case to 

understand the properties of a redox-switchable π-electronic system in solution and at interfaces. 

Pyrazinacenes represent an unusual class of redox-active chromophores whose properties depart from 

usual acenes and lower heteroacenes. 

 

Figure 1. Pyrazinacenes discussed in this work. 

Acknowledgement: This work was partly supported by World Premier International Research Center Initiative 

(WPI Initiative), MEXT, Japan. 

References: 

[1] Richards, G. J.; Hill, J. P. The Pyrazinacenes. Acc. Chem. Res. 2021, 54, 3228. 

[2] Miklík, D.; Mousavi, S. F.; Jung, T. A.; Hill. J. P.; et al.; Commun. Chem. 2021, 4, 29. 

[3] Richards, G. J.; Hill, J. P.; et al. J. Am. Chem. Soc. 2019, 141, 19570.
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Dynamics of the Second-Order Nonlinear Optical Responses  

of Organic Materials 

Frédéric Castet 

Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.  

frederic.castet@u-bordeaux.fr  

 

Quantum chemical calculations have been widely used during the last thirty years for 

rationalizing the second-order nonlinear optical (NLO) responses of small molecules or π-conjugated 

organic chromophores. However, most of theoretical reports assume a rigid picture of the investigated 

systems, the NLO responses being computed on the basis of the most stable geometry of the 

chromophores. Yet, recent theoretical reports combining classical molecular dynamics simulations and 

DFT calculations have evidenced the significant role of structural fluctuations, which may induce broad 

statistical distributions of the NLO responses. In this talk, we will present some case studies in which 

theoretical simulations have highlighted the crucial role of dynamical disorder onto the NLO responses 

of the investigated systems. Selected examples will include photochromic systems in solution, [1] as 

well as large and flexible supramolecular assemblies such as nanoparticles [2] and self-assembled 

monolayers [3] (Figure 1).  

  

Figure 2. Illustration of the hyperpolarizability contrast upon commutation in azobenzene-based monolayers.  

References: 

[1] Pielak, K.; Tonnelé, C.; Sanguinet, L.; Cariati, E.; Righetto, S.; Muccioli, L.; Castet, F.; Champagne B. Dynamical 

behavior and second harmonic generation responses in acido-triggered molecular switches J. Phys. Chem. C. 

2018, 122, 26160-26168. 

[2] Lescos, L.; Beaujean, P.; Tonnelé, C.; Aurel, P.; Blanchard-Desce, M.; Rodriguez, V.; de Wergifosse, M.; 

Champagne, B.; Muccioli, L.; Castet F. Self-assembling, structure and nonlinear optical properties of fluorescent 

organic nanoparticles in water Phys. Chem. Chem. Phys. 2021, 23, 23643-23654.  

[3] Tonnelé, C.; Champagne, B.; Muccioli, L.; Castet F. Nonlinear Optical Contrast in Azobenzene-Based Self-

assembled Monolayers Chem. Mater. 2019, 31, 6759-6769. 
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Development of -Conjugated Pyrimidine Derivatives as Applied 

Luminescent Materials 

Sylvain Achelle,a Filip Bureš,b Julián Rodríguez-López,c Françoise Robin-le Guena 

a Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes – UMR 6226, Rennes, France.  

http://iscr.univ-rennes1.fr/sylvain-achelle; sylvain.achelle@univ-rennes1.fr 
b University of Pardubice, Institute of Organic Chemistry and Technology, Faculty of Chemical 

Technology, Studenská 573, Pardubive 53210, Czech Republic 
c Universidad de Castilla-La Mancha, Área de Química Orgánica, Facultad de Ciencias y Tecnologías 

Químicas, Avda. Camilo José Cela 10, 13071, Ciudad Real, Spain. 

During the past two decades, there has been great interest in the synthesis of pyrimidine 

fluorophores. Pyrimidine is a six-membered heterocycle with two nitrogen atoms (1,3-diazine) that 

exhibits strong electron-withdrawing character. When the pyrimidine ring is combined with electron-

donating fragments via -conjugated linkers, intramolecular charge transfer (ICT) occurs, generally 

leading to strong emission. During the last ten years we have described more than 250 pyrimidine 

fluorophores [1]. In this contribution we will focus on selected examples of pyrimidine chromophores 

used as advanced luminescent materials. Our presentation will focus particularly on fluorescent 

sensors for the detection of nitroaromatic explosives (Figure 1) [2], white-light emitting materials 

obtained by controlled protonation (Figure 2) [3] or combination of locally excited and long-lived, 

intramolecular charge-transfer states [4],  and two-photon excitation fluorescence [5]. 

                                               

            Figure 1.                      Figure 2. 

References: 

[1] Achelle, S.; Rodríguez-López, J.; Robin le-Guen F. Photoluminescence properties of aryl-, arylvinyl-, and 

arylethynylpyrimidine derivatives. ChemistrySelect 2018, 3, 1853-1886. 

[2] Malval J.-P.; Cranney M.; Achelle, S.; Akdas-Kiliç, H.; Fillaut, J.-L.; Cabon, N.; Robin-le Guen, F.; Soppera, O.; 
Molard, Y. Porosity-driven large amplitude dynamics for nitroaromatic sensing with fluorescent films of 

alternating D--A molecules. Chem. Commun. 2019, 55, 14331-14334. 
[3] Achelle, S.; Rodríguez-López, J.; Bureš, F.; Robin-le Guen, F. Tuning the photophysical properties of push-pull 
azaheterocyclic chromophores by protonation: A brief overview of a French-Spanish-Czech Project. Chem. Rec. 
2020, 20, 440-451. 
[4] Fecková, M.; Kalis, I. K.; Roisnel, T.; le Poul, P.; Pytela, O.; Klikar, M.; Robin-le Guen, F.; Bureš, F.; Fakis, M.; 
Achelle, S. Photophysics of 9,9-dimethylacridan-substituted phenylstyrylpyrimidines exhibiting long-lived 
intramolecular charge-transfer fluorescence and aggregation-induced emission characteristics. Chem. Eur. J. 
2021, 27, 1145-1159. 
[5] Kournoutas, F.; Fihey, A. ; Malval, J.-P.; Spangenberg, A.; Fecková, M.; le Poul, P.; Katan, C.; Robin-le Guen, F.; 
Bureš, F.; Achelle, S.; Fakis M. Branching effect on the linear and nonlinear optical properties of styrylpyrimidines. 
Phys. Chem. Chem. Phys., 2020, 22, 4165-4176.  
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Photodynamics and 2-Photon Absorption Properties of Push-Pull 

Molecules with Heterocycle Substituents by Means of fs Laser 

Spectroscopy  

M. Fakis,a M. Klikar,b S. Achelle,c F. Burešb 

a Department of Physics, University of Patras, Greece, 26500 Patras, Greece  

https://www.laserlab.physics.upatras.gr/ ; fakis@upatras.gr  
b Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of 

Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.  
c Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000 Rennes, France. 

Over the past decades there has been tremendous progress in the field of fs laser technology. 

Nowadays, state of the art fs spectroscopic techniques, based on fs lasers, allow us to disentangle 

complex dynamics and to investigate non-linear optical properties by providing great temporal 

resolution, high accuracy, broadband spectral coverage, extreme light intensities while on the same 

time by avoiding thermal effects.  

Push-pull heterocycle molecules are considered model molecules for studying fundamental 

processes such as Intramolecular Charge Transfer (ICT), white light emission through protonation and 

selective energy transfer, as well as for applications in non-linear optics, sensors etc. Within, the last 

years we have studied a great amount of push-pull heterocycle molecules exhibiting rich 

photodynamics and enhanced non-linear optical properties [1-4]. Here, we will review some laser 

spectroscopy techniques based on fs lasers and we will focus on describing the most important results 

regarding ultrafast dynamics and 2-photon absorption for pyridine, pyrimidine, tria-zine and 

quinazoline chromophores.  

 

References: 

[1] Plaza-Pedroche, R.; Georgiou, D.; Fakis, M.; Fihey, A.; Katan, C.; Robin-le Guen, F.; Achelle, S.; Rodríguez-

López, J. Effect of protonation on the photophysical properties of 4-substituted and 4,7-disubstituted quinazoline 

push-pull chromophores. Dyes Pigm. 2021, 185, 108948. 

[2] Fecková, M.; Kalis, I. K.; Roisnel, T.; le Poul, P.; Pytela, O.; Klikar, M.; Robin-le Guen, F.; Bureš, F.; Fakis, M.; 

Achelle, S. Photophysics of 9,9-dimethylacridan substituted phenylstyrylpyrimidines exhibiting long lived 

intramolecular charge transfer fluorescence and aggregation induced emission characteristics. Chem. A Europ. J. 

2021, 13, 1145-1159. 

[3] Kournoutas, F.; Fihey, A.; Malval, J.-P.; Spangenberg, A.; Fecková, M.; le Poul, P.; Katan, C.; Robin-le Guen, F.; 

Bureš, F.; Achelle, S.; Fakis, M. Branching effect on the linear and nonlinear optical properties of 

styrylpyrimidines. PhysChemChemPhys 2020, 22, 4165-4176. 

[4] Kournoutas, F.; Kalis, I. K.; Fecková, M.; Achelle, S.; Fakis, M. The effect of protonation on the excited state 

dynamics of pyrimidine chromophores. J. Photochem. Photobiol. A: Chem. 2020, 391, 112398. 

 

 
 
 
 
 

https://www.laserlab.physics.upatras.gr/
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Flavins – not only cofactors but also versatile photocatalysts 

Cibulka R.a 

a University of Chemistry and Technology, Prague, Technická 5, Prague, 16628, Czech Republic.  

https://uoch.vscht.cz/research-groups/cibulka-en; cibulkar@vscht.cz 

Photoexcitation allows chemical transformations that are not accessible by conventional 

methods. Use of visible light combined with a photocatalyst even improves classical photochemical 

methodologies avoiding side reactions of functionalities sensitive to UV light and making 

photochemistry available for most laboratories. Nowadays, photo-redox catalysis with organic 

photocatalysts is of a growing interest because of low costs of organic dyes and new reactions that 

they are able to mediate thus expanding the boundaries of organic synthesis [1]. 

Several organic dyes including simple aromatic heterocyclic compounds have been found to 

provide a certain type of transformations involving either photoreductive or photooxidative catalytic 

cycle. However, there is only limited number of photocatalysts, which are characterized by versatile 

reactivity [2]. Flavins (Figure 1), prominent natural chromophores, are characterized by several stable 

redox and excited states [3]. Additionally, three-ring flavin (isoalloxazine) structure offers great option 

to tune redox and photophysical properties. Thus, flavin-based photocatalysts are destined to drive a 

diverse range of chemical reactions. Among flavin derivatives, one can find ethylene-bridged flavinium 

salts 1, behaving as strong oxidizing species [4]. On the other hand, an excited radical anion of 5-

phenyldeazaflavin 2 is one of the strongest reducing species comparable with alkaline metals [5]. In 

the presentation, rational design of flavin-based photocatalytic systems and their application in aerial 

oxidations, C-H activations, and in photoreductions will be discussed. 

 

Figure 3. Riboflavin with highlighted isoalloxazine ring and flavin derivatives used in photoredox catalysis. 

Acknowledgement: Author thanks the Czech Science Foundation (grant No 21-14200K) for financial support. 

References: 

[1] Sideri, I. K.; Voutyritsa, E.; Kokotos, C. G. Org. Biomol. Chem. 2018, 16, 4596-4614. 

[2] Targos, K.; Williams, O. P.; Wickens, Z. K. J Am Chem Soc 2021, 143, 4125-4132. 

[3] Cibulka, R.; Fraaije, M. W. In Flavin‐Based Catalysis 2021, p 97-124. 

[4] Pokluda, A.; Anwar, Z.; Boguschová, V.; Anusiewicz, I.; Skurski, P.; Sikorski, M.; Cibulka, R. Adv. Synth. Catal. 

2021, 363, 4371-4379. 

[5] Graml, A.; Neveselý, T.; Jan Kutta, R.; Cibulka, R.; König, B. Nature Comm. 2020, 11, 3174. 
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Covalent Organic Square Lattice Building Blocks toward the 

Supercapacitive Energy Storage 

Santanu Bhattacharya 

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India. 

School of Applied and Interdisciplinary Sciences & #Technical Research Center. 

Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India. 

https://orgchem.iisc.ac.in/santanu-bhattacharya/; sb23in@yahoo.com. 

 

Covalent organic frameworks (COFs) are of growing interest in the field of materials science. 

Polymerizations of the topologically fitted monomers into two-dimensional (2D) structures with 

periodic order often make them crystalline. The existence of this structural periodicity and regular 

pores makes them effective for facile ion transport and storage applications. We have synthesized 

a Porphyrin-Tetraphenyl ethylene COF (PT-COF) which possesses high crystallinity along with a large 

surface area of nearly 2000 m2 g-1. The presence of porphyrin unit inside the framework helps for good 

redox activity in the acidic media.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

PT-COF
dispersion GCE Supercapacitor
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Alkynes and Bridged Triarylamines as Versatile Construction 

Elements for Functional Molecular Materials 

Milan Kivalaa,b 

a Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 

69120 Heidelberg, Germany.  

https://www.uni-heidelberg.de/fakultaeten/chemgeo/oci/akkivala/index.html 
b Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 

69120 Heidelberg, Germany 

 

Triarylamines and their bridged counterparts have in the meanwhile become ubiquitous in the area of 

organic electronics owing to their appreciable electron donor and hole transport properties [1]. We 

have recently realized that various structurally relatively simple triarylamines in combination with the 

highly reactive acetylenic moieties may serve as versatile building blocks for the construction of novel 

nitrogen-containing polycyclic aromatic hydrocarbons (PAHs). In these compounds nitrogen readily 

adopts a planar sp2-hybridized geometry to provide for efficient electronic communication with the 

surrounding  system [2,3]. The resulting PAHs are highly attractive objects for fundamental studies as 

defined molecular fragments of heteroatom-doped carbon allotropes on one hand and as functional 

materials for diverse applications on the other. 

 

 

In this talk, our recent synthetic efforts will be presented and the fundamental characteristics of the 

resulting compounds discussed. 

Acknowledgement: This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) – Project 

number 182849149 – SFB 953 and Project number 281029004 – SFB 1249. 
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[1] Schaub, T. A.; Padberg, K.; Kivala, M. Bridged Triarylboranes, -silanes, -amines, and -phosphines as 

Minimalistic Heteroatom-containing Polycyclic Aromatic Hydrocarbons: Progress and Challenges. J. Phys. Org. 
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Heterocyclization of α-hydroxyiminoketones with methylideneamines, leading to 

2-unsubstituted imidazole N-oxides 1 can be performed either in boiling EtOH or in AcOH at room 

temperature [1]. In addition, mechanochemical approach, based on a ball-milling procedure, have 

recently been elaborated in our group [2]. The N-oxides 1 are known to act as versatile substrates for 

preparation of more complex and practically useful imidazole derivatives and their 1,3-dipolar 

cycloadditions offer a superior method for these multi-step conversions. In this paper, synthesis of 

lepidilines A-D (2) [3a]  as well as their benzyloxy analogues 3 [3b], starting with imidazole N-oxides 1, 

will be discussed.  

 

 
  

 
 

 

 
 

 

 
In recent three decades, nucleophilic carbenes (NHCs) attract great attention. In a series of 

recent publications, efficient methods for generation of mono- and dialkoxyimidazol-2-ylidenes, e.g. 4 

(NOHCs) as well as their further sulfurization leading to non-enolizable imiazole-2-thiones 5 have been 

published [3]. Optically active NOHCs have also been in situ generated and converted into 

corresponding imidazole-2-thiones 5 [4]. In contrast to the Arduengo carbene, free NOHCs could not 

be isolated but they were efficiently trapped with Au(I), Ag(I), and Cu(I) salts forming respective metal 

complexes e.g. 6 ([1-adamantyloxy-3-adamantyl-4,5-dimethylimidazol-2-ylidene]∙AuCl) [5].  
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Identification of new reactivity pathways constitutes one of the most significant tasks in the 

contemporary organic chemistry. In particular, the development of enantioselective reactions where 

prochiral substrates are converted into enantiomerically enriched products in the presence of chiral 

catalyst are of great importance [1]. Recently, asymmetric organocatalysis, where simple organic 

molecules are used as catalysts of various enantiodifferentiating reactions, has become a highly useful 

synthetic tool enabling for the efficient asymmetric induction based on diverse activation modes [2]. 

Within this research area, the application of dearomative strategies created new synthetic 

opportunities for the functionalization of (hetero)aromatic compounds [3]. Herein, we report our 

studies on organocatalytic, enantioselective dearomative strategies for the synthesis and 

functionalization of biologically relevant heteroaromatic compounds [4]. 

 

Figure 4. Organocatalytic dearomative strategies for the functionalization of heteroaromatic frameworks. 
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Organic light-emitting diodes (OLEDs) have attracted much attention in the past few decades 

and are considered as remarkably attractive candidates for flat panel display technologies and solid-

state lighting [1]. Phosphorescent heavy-metal complexes, such as platinum(II) complexes, with long-

lived excited state lifetime are able to efficiently harvest both singlet and triplet electro-generated 

excitons, thus opening the possibility to achieve theoretically 100% internal quantum efficiency in such 

devices [2].  

Cyclometallated platinum(II) complexes based on diazines ligands display strong 

phosphorescence and electroluminescence (EL) and they could be utilized as light emitting materials 

in OLEDs [3]. It is easy to alter electronic structures and photophysical properties of platinum 

complexes by modification of the coordinated ligands [4,5].   

In a preliminary communication we have demonstrated that some Pt(II) complexes with 

phenylpyrimidine N^C ligands can exhibit interesting emission properties in solution and solid state 

when judiciously substituted [6]. In this presentation, we will describe the synthesis and photophysical 

properties of a new series of Pt(II) complexes with phenyl(benzo)diazine ligand. The influence of 

various structural modification on photophysical properties had been thoroughly studied and structure 

properties relationships were highlighted. 

        
Figure 5.  Chemical structures and picture (taken under UV) of the investigated                              

cyclometallated platinum(II) complexes. 
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Organic dipolar molecules have recently captivated enormous attention due to their wide 

structural diversity and tunable optoelectronic properties. In a typical organic D−π−A molecule, the 

electron donor (D = NR2 or OR groups) and acceptor (A = NO2 or CN groups) moieties are connected 

via a π-conjugated spacer unit. The polarizability of such compounds depends on the overall chemical 

structure, such as the electronic characteristics of the donor and acceptor units, geometry, length, as 

well as nature of the π-conjugated linker. Thus, these photoresponsive materials are often utilized in 

two-photon-absorbing devices, optoelectronics and data storage systems, organic light-emitting 

diodes, organic photovoltaic cells, etc. Sometimes, five-membered heteroaromatic rings, such as 

thiophene or imidazole, are incorporated in the spacer unit to construct a robust πconjugated 

backbone with a larger hyperpolarizability. On the other hand, the fluorescence response of such dye 

molecules also depends on the nature of the π-linker (electronic characteristics, rigidity etc). Despite 

these, application of such systems in biomolecular analysis remained underexplored. Considering 

these, herein we have employed heterocycles-Functionalized Y‑Shaped Push−Pull Dyes for reaction-

based recognition of toxic ions (such as Cu2+, Hg2+ etc) and gaseous analytes (nerve gas mimics). 

Analyte-coordination at the heterocycle (thiophene or imidazole) residue of the π-linker diminishes 

the extent of the intramolecular charge-transfer (ICT) interaction, leading to hypsochromic shift in 

absorption maxima. 

 

Figure 6. Push-Pull Heterocyclic Dyes involved in the optical sensing of environmental toxins. 
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The linear and nonlinear optical (NLO) properties of two new series of pyrazine derivatives 

have been investigated by means of density functional theory [1]. The derivatives comprise cyano 

groups as acceptor units, methoxy groups as donor units, and 2,5-thiophene groups as -conjugated 

linkers that systematically enlarge the  shape of the chromophores. The two series of compounds 

differ in the relative position of the donor and acceptor groups in the pyrazine, forming 2,3- or 

2,6-isomers. Both series of isomers present potential C2v symmetry with a different orientation of the 

C2 axis and the v plane of the symmetry point group: in the pyrazine plane but perpendicular to the 

N-N pyrazine’s axis for the 2,3-isomers, and in the pyrazine plane and containing the N-N pyrazine’s 

axis for the 2,6-isomers (Figure 1). Focusing on the different orientation of the C2v symmetry elements 

and how these structural changes affect the electronic structure and the characterization of the 

electronic excited states of the chromophores, a rationalization of the second-order nonlinear 

responses (mainly Hyper-Rayleigh Scattering (HRS) hyperpolarizabilities) will be done from 

a fundamental point of view [2]. 

 

Figure 7. Pyrazine derivatives investigated in this work. 
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Twenty new push-pull chromophores derived from electron-donor thieno[3,2-b]thiophene 

and thieno[2,3-b]thiophene heterocycles (Figure 1.) were prepared through facile synthetic routes 

[1,2]. Tailoring of optical, electrochemical and thermal properties was achieved by alternation of 

acceptor units or extension of the -linker between electron-donating and electron-withdrawing 

moieties. Detailed study focused on structure-property relationships elucidation was performed using 

UV-VIS absorption spectroscopy, cyclic voltammetry, differential scanning calorimetry, 

thermogravimetric analysis and investigation of second- and third harmonic generation. Gathered 

experimental data were also supplemented by DFT calculations to study spatial and electronic 

properties of all synthesized target heterocyclic compounds. Based on the structural arrangement, 

extended thieno[3,2-b]thiophene chromophores with an inserted double bond proved to be 

photoinducible molecular E/Z switches. The Z isomer can be partly obtained by Royal Blue LED 

irradiation, while E isomeric form is subsequently fully regenerated in the dark. 

 
Figure 8. Synthesized thienothiophene push-pull chromophores. 
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During early `50s, electroluminiscence of organic compounds, namely acridine and carbazole 

derivatives, was observed for the first time. Despite this fact, a new branch of organic chemistry, 

organic electronics, began to develop in late `80s. The interest in organic materials is mainly due to 

several advantages over inorganic materials. These include lower price and toxicity, facile property 

tuning by simple structural modifications as well as easier fabrication. Organic emissive and color-

changing materials found wide applications. D-π-A chromophores with various shapes [1] belong to 

such materials with variable donors, acceptors and π bridges and manifold applications in OLEDs, OPVs, 

NLO, and emissive materials for sensors. Triphenylamine (TPA) is widely used as central unit of D-π-A 

molecules. Upon its decoration with various number of peripheral pyridine acceptors as well as various 

peripheral donors, we have prepared push-pull compounds, with various emmisions [2,3] (Figure 1). 

 

Figure 9. Pyridine-TPA fluorophores. 
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To date, a wide variety of push-pull chromophores have been designed and synthesized 

employing a diverse portfolio of D, , and A moieties. A number and mutual arrangement of D, , and 

A parts can be further evolved to form -systems with unique shapes and octupolar character [1]. 

Among them, the tripodal D-(-A)3 chromophores based on the central triphenylamine (TPA) donor 

have a privileged position. Moreover, star-shaped TPA chromophores are well-known to bring 

expanded conjugation leading to enhancement of two-photon absorption (2PA) properties [2].  

Among others, heteroaromatics possessing sp2-hybridized nitrogen atom(s) such as (di)azines 

represent very popular acceptor units in this field. It is well known that (di)azine-based chromophores 

exhibit a remarkable emissive and nonlinear optical response, which is reflected in the enhanced 

fluorescent and 2PA behavior [3]. Hence, we designed and synthesized a series of TPA-based tripodal 

fluorophores with peripheral diazine acceptors featuring exceptional optical properties (Fig. 1). This 

study can serve as a reliable systematic photophysical guide comparing the (non)linear optical 

response of particular diazine regioisomers. 

 
Figure 10. Tripodal triphenylamine-based fluorophores with attached electron-withdrawing diazine 

regioisomers. 
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Heteroaromates containing nitrogen atom(s) can be found across dozens of research fields and 

one of such are redox flow batteries (RFBs) utilizing various heteroaromates. For instance, viologen 

(N,N´-dialkyl-4,4´-bipyridinium), a famous herbicide, was intensively studied as an anolyte in aqueous 

RFBs during last decade [1]. 

In this contribution, we report structural modifications on parent 4,4´-bipyridinium moiety and 

subsequent study of fundamental electrochemical properties. The structural modifications of viologen 

scaffold comprises shortening, isomerization, elongation and fusion of the -system, while mono and 

twofold N-alkylation(s) were performed. All derivatives were subjected to cyclic voltammetry in 

aqueous electrolytes. Perspective compounds featuring reversible redox processes were subsequently 

characterized by a rotating disc glassy carbon electrode. Electrochemical stability was studied in flow 

battery half-cell with post mortem NMR analysis of the electrolytes [2,3]. 

 

Figure 11. Structural variation of viologen moiety followed by electrochemical measurements. 
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A simple, efficient, and high yielding one-pot protocol for the synthesis of 5-arylpyrimido[4,5-

b]quinoline-2,4(3H,10H)-diones (5-aryldeazaflavins) has been developed by three-component domino 

reaction of N-substituted anilines, aromatic aldehydes, and N-methylbarbituric acid in AcOH media 

promoted by PPA. 5-Deazaflavins are usually involved in two-electron enzymatic redox reactions in 

a variety of biological systems and are structurally similar to flavins with position N-5 of isoalloxazine 

ring substituted by methine group [1,2]. Synthesized 5-aryldeazaflavins appeared to be powerful 

catalysts for the redox photocatalysis and showed excellent results in the reductive 

photodehalogenation of electron-rich aromatic halides.  

 

Figure 12. Synthesis and application of the 5-deazaflavins 
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During the last two decades, the research on P-containing -conjugated systems based on small 

molecules, oligomers and polymers has increased substantially thanks to the development of “plastic 

electronic” devices. Compared to purely organic -systems, the presence of a heteroatom such as 

phosphorus affords multiple molecular engineering strategies in order to tune the chemical structure 

and the physico-chemical properties. Our research team showed that phospholes (Fig.) were excellent 

candidate to prepare Organic Light Emitting Diodes (OLEDs) [1]. In this communication, we will study 

the modification coming from the substitution of the 5-membered P-ring by a 7-membered P-ring 

(phosphepine, Fig.). In particular, this cycle induces molecular distortion (benting, twisting …). And 

eventually chirality These modifications will be studied through an experimental and theoretical 

approach. Finally, preparation of opto-electronic devices will highlight the potential of these 

derivatives for  organic electronics [2]. 

 

.  
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Ligands bearing an oxazoline moiety in combination with palladium metal are an efficient 

catalytical system for Hayashi-Miyaura reaction, the addition of boronic acids to an electron-deficient 

double bond [1]. Hayashi-Miyaura addition gives access to useful nitro compounds with a tertiary 

stereocenter, which can be taken advantage of in a further synthesis [2].  

One of the most successful works describing Hayashi-Miyaura addition of arylboronic acids to 

β-nitrostyrenes has been published by He et al [3]. They described the use of oxazoline-isoquinoline 

ligand in combination with palladium(II) trifluoroacetate as an efficient catalyst [3].  

This work focuses on the above-mentioned catalytic system. Copolymerization strategy was 

chosen and a ligand bearing a styryl moiety was designed and prepared. Thusly prepared ligand was 

copolymerised, and several copolymers were prepared. Effect of the copolymer composition and the 

way of preparation on catalytical activity and enantioselectivity for the addition of arylboronic acids to 

β-nitrostyrenes are discussed in this work. 

 

Figure 13. Addition of arylboronic acids to β-nitrostyrenes 
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Synthesis of enantiomerically pure compounds is an important objective in synthetic organic 

chemistry and thus considerable effort has been devoted to develop synthetic methodologies allowing 

full control over enantioselective outcome of such reactions. In the scope of organocatalysis chiral 

Brønsted acids are important group of catalysts to address this issue. Chiral phosphoric acids are 

commonly used representatives in Brønsted acid organocatalysis, though the access to such catalysts 

is synthetically laborious and financially demanding. To evade this issue 

pentacarboxycyclopentadienes (PCCPs) offer a synthetically useful platform for Brønsted acid-

catalyzed transformations due to less laborious synthetic protocol and low pKa values. This makes them 

an interesting alternative for chiral Brønsted acid-catalyzed transformations firstly reported by 

Lambert and co-workers [1]. 

In this contribution we would like to demonstrate that chiral pentacarboxycyclopentadiene 

(PCCP) derivatives could be used in the enantioselective aminalization of aldehydes with 

anthranilamide derivatives [2]. Corresponding 2,3-dihydroquinazolinone derivatives are obtained with 

high yield and with good enantiomeric purity. 

  

 

 

 

 

Figure 14. PCCP catalyzed aminalization of aldehydes. 
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The selective C–C bond cleavage of unreactive C–C bond and formation of the new one is most 

important and challenging goal in organic chemistry. Activation of unreactive C–C bond could lead to 

new unique products. One possible strategy is activation of C–C bonds in strained rings. Recently, we 

developed and presented regioselective catalytic cleavage of the proximal or distal C–C bonds in 

1-azabiphenylene, which provided benzo[f]- and benzo[h]-quinolines [1].  

Herein, we present a combined computational and experimental study in an effort to 

understand regioselective C–C bond activation in linear 1-aza-[3]triphenylene. Linear 1-aza-

[3]triphenylene contains four nonequivalent C–C bond in two different cyclobutadienes, and there 

arise a question which one will be preferentially cleaved. DFT calculations gave us some initial insight 

which one should be preferential activated. The relevant experiments confirmed the prediction, and it 

enabled to design Ir-catalyzed C–C bond activation/alkyne annulation process and gain access to 

polyaromatic hydrocarbons with extended π-conjugated system (Figure 1).  

 

 

 

 

Figure 15. C–C bond cleavage in linear 1-aza-[3]triphenylene and X-ray structure of products 
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The use of palladium catalyst for an asymmetric addition of arylboronic acids to cyclic 

ketimines was for the first time reported by Zhang [1]. In this work we present the Pd(TFA)2 complex 

with (S)-4-(tert-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole as a new one catalyst for 

an enantioselective addition of arylboronic acids to cyclic ketimines, which provides excellent results 

in homogeneous reaction conditions. Such ligand was designed and prepared with various spacers, 

which allow immobilization on solid carriers. The advantage of our immobilization strategy is a cheap 

and commercially available starting compound, which can be elegantly immobilized in three reaction 

steps.  

 

Figure 16. Addition of arylboronic acids to cyclic ketimines catalysed by Pd(TFA)2 complex of pyridine-

oxazoline [1]. 

 

Figure 2. The Novel homogeneous and heterogeneous catalyst for enantioselective addition of arylboronic acids 

to cyclic ketimines. 
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Trifluoromethylated pyrazoles are considered as privileged structural motifs for drug discovery 

and for this reason, they received great attention in the last two decades [1]. In search for CF3-synthons 

useful for preparation of the title heterocycles we turned to trifluoroacetonitrile imines A, which can 

be in situ generated through base-mediated dehydrohalogenation of the respective hydrazonoyl 

precursors [2]. Subsequently, these reactive 1,3-dipoles can easily be trapped with such dipolarophiles 

as thiocarbonyl compounds and alkenes as well as with some bifunctional agents to give five- or six-

membered N-heterocyclic products [3]. More importantly, in certain cases subsequent aromatization 

of the initially formed (3+2)-cycloadducts, e.g. pyrazolines, can be fully controlled, e.g. by the type of 

solvent used, leading to products possessing different substitution patterns. Our recent results related 

to exploration of nitrile imines A for preparation of 3-trifluoromethylated pyrazoles and mechanisms 

of the studied reactions, will be summarized and discussed. 

 

Figure 17. Selected strategies leading to 3-trifluoromethylpyrazoles discussed in the paper. 
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Aromatic heterocycles are present in a myriad of molecules used for numerous applications. 

In the group, synthetic methodologies are developed to selectively introduce iodine onto 

heteroaromatic compounds. Besides direct iodination [1], deprotometalation reactions followed by 

iodolysis have been applied to substrates sensitive to nucleophilic attacks [2]. To overcome the low 

tolerance of some functional groups toward organolithiums, hindered lithium amide-metal trap 

tandems have been designed. The generated aromatic iodides have been converted by transition 

metal-catalyzed cross-couplings, for instance combined with cyclizations, to access original 

heterocycles. Their properties have been evaluated in the frame of collaborations, and a few showed 

valuable bioactivities [1-3]. 

 

Figure 18. Heterocycles synthesized from aromatic iodides. 
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Swellable pearl-like copolymers of (S)-4-(tert-butyl)-2-(4-(4-vinylphenyl)pyridin-2-yl)-4,5-

dihydrooxazole with styrene and various cross-linkers were designed and prepared. Catalytic activity 

of palladium (II) complexes of the prepared copolymers was tested on addition of various arylboronic 

acid to 3-methyl-2-cyclohexenone. It was possible to use the catalyst at least 6 times and their catalytic 

activity was comparable with homogenous conditions. Such system was the very first recyclable 

catalytic system for palladium-catalysed asymmetric addition of arylboronic acids to conjugated cyclic 

enones. 

 

Figure 19. 1,4–addition of arylboronic acids to cyclic enones catalysed by polymer-supported palladium (II) 

complex of pyridine-oxazoline. 
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Late-stage functionalization (LSF) of C−H bonds is a powerful tool for the efficient synthesis of 

functionalized complex molecules. It enables synthesis of compound libraries by decoration of basic 

skeleton at the end of synthetic pathway. LSF is challenging because the C−H bond is functionalized in 

the presence of various other functional groups. However, these groups can be in some cases (DGs) 

advantageously used to control site-selectivity. This contribution will introduce a simple way for 

switching the DGs assisted site-selectivity of C−H functionalization of aromatic bonds by acid additives 

[1].  

This concept is based on the fact that the stronger DG tends to be more basic. Therefore, 

addition of acid to the reaction mixture causes its protonation and thus loss of DG ability. Then, the 

weaker DG directs the reaction [2]. 

 

 

Figure 20. Basic principle of site-selectivity switch. 

 

Acknowledgement: This work has been supported by project number SGS_2022_003. 

References: 

[1] Váňa, J.; Bartáček, J.; Hanusek, J.; Roithová, J.; Sedlák, M. C–H Functionalizations by Palladium Carboxylates: 

The Acid Effect. J. Org. Chem. 2019, 84, 12746−12754. 

[2] Korábková, T. Řízení regioselektivity C–H funkcionalizačních reakcí pomocí acidity prostředí, Diploma thesis, 

University of Pardubice, 2021. 

 



Contributed Lectures (CL18) 

40 
 

Transformations of Thioiminium Salts Derived α-Bromoamides  

Lukáš Marek,a Jiří Váňa,a Martin Kocúrik,a Jiří Hanuseka 

a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of 

Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.  

https://www.researchgate.net/profile/Lukas-Marek; L-Marek@seznam.cz. 

Our research group is constantly involved in the exploration of substitution  

and condition-dependent transformations of thioiminium salts derived from α-bromoamides to 

heterocycles containing nitrogen and sulfur. Originally, we intended to use abovementioned building 

blocks for synthesis of highly fluorescent 4-hydroxythiazoles. However, recently, we have found that 

the salts formed by reaction of 3-bromoindol-2-one with thioamides can also undergo thiophile-free 

Eschenmoser reaction under specific conditions, to give pharmaceutically valuable vinylogous amides 

[1]. Essentially, these two chemical transformations are competing each other and final reaction 

course depends both on reaction conditions (polarity of the solvent, temperature, base addition) and 

electronic effects.  

In order to better understand to the reactivity, we further investigated  possible 

transformation pathways of structurally related thioiminium salts derived from acyclic subst.  

2-bromophenylacetamides (1) and their cyclic counterparts, i.e. 4-bromo-1,1-dimethyl-1,2-

dihydroisoquinolin-3(4H)-ones (2) (Figure 1). Reaction of α-thioiminium salts derived from 

2-bromophenylacetamide and prim./sec. thiobenzamides afforded 2,5-diaryl-4-hydroxythiazoles (3) or 

zwitterionic 3-methyl-2,5-diphenylthiazol-3-ium-4-olates (4) in moderate yields. When cyclic  

α-bromolactam 2 was reacted with prim. thioamides, 5,5-dimethyl-2-phenyl-4,5-dihydrothiazolo[4,5-

c]isoquinoline (5) was isolated. Heating the same salts in the excess of thiophile (trimethyl phosphite) 

did not resulted in formation of conjugated vinylamines, but only N-methylation leading to thiazole 6 

has occurred. On the other hand, reaction of cyclic bromoamide 2 with sec. thioamides led to an 

Eschenmoser reaction products 7 in moderate to good yields even without thiophile. 

 

Figure 21. Structure scaffolds formed by reaction of (a)cyclic α-bromoamides and prim./sec. thioamides. 
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